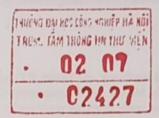

Programming


Computer Vision with Python

O'REILLY®

Jan Erik Solem

Programming Computer Vision with Python

Jan Erik Solem

Table of Contents

refa	ce .		vii
1.	Basi	c Image Handling and Processing	1
	1.1	PIL—The Python Imaging Library	1
	1.2	Matplotlib	3
	1.3	NumPy	7
	1.4	SciPy	16
	1.5	Advanced Example: Image De-Noising	23
	Exe	rcises	26
	Cor	enventions for the Code Examples	27
2.	Loca	al Image Descriptors	29
	2.1	Harris Corner Detector	29
	2.2	SIFT—Scale-Invariant Feature Transform	36
	2.3	Matching Geotagged Images	44
	Exe	rcises	51
3.	lma	ge to Image Mappings	53
	3.1	Homographies	53
	3.2	Warping Images	57
	3.3	Creating Panoramas	70
	Exe	rcises	77
4.	Cam	nera Models and Augmented Reality	79
	4.1	The Pin-Hole Camera Model	79
	4.2	Camera Calibration	84
	4.3	Pose Estimation from Planes and Markers	86
	4.4	Augmented Reality	89
	Exe	rcises	98

5.	Multiple view deolifetry	99
	5.1 Epipolar Geometry	99
	5.2 Computing with Cameras and 3D Structure	107
	5.3 Multiple View Reconstruction	113
	5.4 Stereo Images	120
	Exercises	125
6	Clustering Images	100
6.	6.1 K-Means Clustering	127
	6.2 Hierarchical Clustering	127
	6.3 Spectral Clustering	133
	Exercises	140
		145
7.		147
	7.1 Content-Based Image Retrieval	147
	7.2 Visual Words	148
	7.3 Indexing Images	151
	7.4 Searching the Database for Images	155
	7.5 Ranking Results Using Geometry	160
	7.6 Building Demos and Web Applications	162
	Exercises	165
8.	Classifying Image Content	167
	8.1 K-Nearest Neighbors	167
	8.2 Bayes Classifier	175
	8.3 Support Vector Machines	179
	8.4 Optical Character Recognition	183
	Exercises	189
9.	Image Segmentation	101
	9.1 Graph Cuts	191
	9.2 Segmentation Using Clustering	200
	9.3 Variational Methods	204
	Exercises	206
10.	OneseCV	
10.	OpenCV	209
	10.1 The OpenCV Python Interface	209
	10.2 OpenCV Basics	210
	10.3 Processing Video	213
	10.4 Tracking	216
	10.5 More Examples	223
	Exercises	226

A.	Installing Packages				
	A.1	NumPy and SciPy	22		
	A.2	Matplotlib	228		
	A.3	PIL	228		
	A.4	LibSVM	228		
	A.5	OpenCV	229		
	A.6	VLFeat	230		
	A.7	PyGame	230		
	A.8	PyOpenGL	230		
	A.9	Pydot	230		
	A.10	Python-graph	231		
	A.11	Simplejson	231		
	A.12	PySQLite	232		
	A.13	CherryPy	232		
В.	Image Datasets				
	B.1	Flickr	233		
	B.2	Panoramio	234		
	B.3	Oxford Visual Geometry Group	235		
	B.4	University of Kentucky Recognition Benchmark Images	235		
	B.5	Other	235		
C.	Image Credits				
	C.1	Images from Flickr	237		
	C.2	Other Images	238		
	C.3	Illustrations	238		
efer	ences		239		

Preface

Today, images and video are everywhere. Online photo-sharing sites and social networks have them in the billions. Search engines will produce images of just about any conceivable query. Practically all phones and computers come with built-in cameras. It is not uncommon for people to have many gigabytes of photos and videos on their devices.

Programming a computer and designing algorithms for understanding what is in these images is the field of computer vision. Computer vision powers applications like image search, robot navigation, medical image analysis, photo management, and many more.

The idea behind this book is to give an easily accessible entry point to hands-on computer vision with enough understanding of the underlying theory and algorithms to be a foundation for students, researchers, and enthusiasts. The Python programming language, the language choice of this book, comes with many freely available, powerful modules for handling images, mathematical computing, and data mining.

When writing this book, I have used the following principles as a guideline. The book should:

- Be written in an exploratory style and encourage readers to follow the examples on their computers as they are reading the text.
- Promote and use free and open software with a low learning threshold. Python was the obvious choice.
- Be complete and self-contained. This book does not cover all of computer vision but rather it should be complete in that all code is presented and explained. The reader should be able to reproduce the examples and build upon them directly.
- Be broad rather than detailed, inspiring and motivational rather than theoretical.

In short, it should act as a source of inspiration for those interested in programming computer vision applications.